Можно ли матрицу. Матрицы. Виды матриц. Основные термины. Какие матрицы можно умножать

Определение. Матрицей размера называется таблица чисел, состоящая изстрок истолбцов. Числа, составляющие матрицу, называются элементами матрицы.

Матрицы обозначаются прописными буквами латинского алфавита (например А, В, С ), а элементы матрицы – строчными буквами с двойной индексацией: , где– номер строки,– номер столбца.

Например, матрица
,

или в сокращенной записи
, где
;
.

Виды матриц.

Матрица, состоящая из одной строки, называется матрицей (вектором)–строкой , а из одного столбца – матрицей (вектором)–столбцом :
– матрица–строка;

–матрица–столбец.

Матрица называется квадратной - го порядка, если число ее строк равно числу столбцов и равно . Например,
– квадратная матрица третьего порядка.

Элементы матрицы , у которых номер строки равен номеру столбца
, называютсядиагональными и образуют главную диагональ матрицы.

Если все недиагональные элементы квадратной матрицы равны нулю, то матрица называется диагональной . Например,

–диагональная матрица третьего порядка.

Если у диагональной матрицы -го порядка все диагональные элементы равны единице, то матрица называетсяединичной матрицей -го порядка и она обозначается буквой. Например,
– единичная матрица третьего порядка.

Операции над матрицами.

Например, если
, то
.

Например:
,
,
.

Пример. Вычислить произведение матриц
,
где

;
.

Найдем размер матрицы-произведения (если умножение матриц возможно):
. Вычислим элементы матрицы. Элементполучается при умножении-ой строки матрицына-ый столбец матрицы.

Получаем
.

,
.

Из определения следует, что если матрица имеет размер
, то транспонированная матрицаимеет размер
.

Например:
;
.

Определители квадратных матриц

Определитель – это число, характеризующее квадратную матрицу.

Определитель матрицы обозначаетсяили.

Определителем матрицы первого порядка
, илиопределителем первого порядка , называется элемент
:

. Например, пусть
, тогда
.

Определителем матрицы второго порядка
, илиопределителем второго порядка , называется число, которое вычисляется по формуле:

.

Произведения
и
называютсячленами определителя второго порядка. Например, пусть
, тогда
.

Пусть дана квадратная матрица третьего порядка:

.

Определителем матрицы третьего порядка , или определителем третьего порядка, называется число, которое вычисляется по формуле:

Это число представляет собой алгебраическую сумму, состоящую из 6 слагаемых, или 6 членов определителя. В каждое слагаемое входит ровно по одному элементу из каждой строка и каждого столбца матрицы. Знаки, с которыми члены определителя входят в формулу, легко запомнить, пользуясь схемой (рис.1.), которая называется правилом треугольников или правилом Сарруса .

Для вычисления определителей более высоких порядков потребуются некоторые дополнительные понятия.

Пусть дана квадратная матрица n -го порядка.

Минором
элемента
матрицы n -го порядка называется определитель матрицы (n 1)-го порядка, полученной из матрицы вычеркиванием-ой строки и-го столбца.

Например, минором элемента
матрицытретьего порядка будет:

Алгебраическим дополнением элемента матрицы n -го порядка называется его минор, взятый со знаком
:
, т.е. алгебраическое дополнение совпадает с минором, когда сумма номеров строки и столбца (i + j ) – четное число, и отличается от минора знаком, когда (i + j ) – нечетное число. Например, ;
.

Для вычисления определителей квадратных матриц выше третьего порядка пользуются теоремой Лапласа.

Теорема Лапласа. Определитель квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения:

(разложение по элементам i - й строки;
);

(разложение по элементам j - го столбца;
);

По свойствам определителей, определитель матрицы не изменится, если к элементам любой строки (столбца) матрицы прибавить элементы другой строки (столбца), предварительно умноженные на одно и то же число. Это свойство определителей и теорема Лапласа позволяют существенно упростить вычисление определителей высоких порядков. При вычислении определителей нужно преобразовать исходную матрицу так, чтобы преобразованная матрица имела строку (или столбец), содержащую как можно больше нулей, а потом найти определитель разложением по этой строке (столбцу).

Пример . Вычислить определитель четвертого порядка:

.

Преобразуем матрицу так, чтобы в 3-й строке все элементы, кроме одного, обращались в 0. Для этого умножим элементы 3-го столбца на (-4) и на 2 и прибавим их соответственно к элементам 1-го и 2-го столбцов. Раскладывая полученный определитель по элементам третьей строки, найдем

.

Полученный определитель третьего порядка можно вычислить по правилу треугольников или с помощью теоремы Лапласа, однако, можно продолжить упрощение матрицы. "Обнулим" в матрице третьего порядка элементы 2-ой строки (кроме одного). Для этого элементы третьего столбца матрицы, предварительно умножив на (-13) и на 4, сложим с элементами 1-го и 2-го столбцов соответственно:

.

Раскладывая по элементам второй строки и вынося общие множители, получаем.

Матрицы в математике - один из важнейших объектов, имеющих прикладное значение. Часто экскурс в теорию матриц начинают со слов: "Матрица - это прямоугольная таблица...". Мы начнём этот экскурс несколько с другой стороны.

Телефонные книги любого размера и с любым числом данных об абоненте - ни что иное, как матрицы. Такие матрицы имеют примерно следующий вид:

Ясно, что такими матрицами мы все пользуемся почти каждый день. Эти матрицы бывают с различным числом строк (различаются как выпущенный телефонной компанией справочник, в котором могут быть тысячи, сотни тысяч и даже миллионы строк и только что начатая Вами новая записная книжка, в которой меньше десяти строк) и столбцов (справочник должностных лиц какой-нибудь организации, в котором могут быть такие столбцы, как должность и номер кабинета и та же Ваша записная книжка, где может не быть никаких данных, кроме имени, и, таким образом, в ней только два столбца - имя и телефон).

Всякие матрицы можно складывать и умножать, а также проводить над ними другие операции, однако нет необходимости складывать и умножать телефонные справочники, от этого нет никакой пользы, к тому же можно и подвинуться рассудком.

Но очень многие матрицы можно и нужно складывать и перемножать и решать таким образом различные насущные задачи. Ниже примеры таких матриц.

Матрицы, в которых столбцы - выпуск единиц продукции того или иного вида, а строки - годы, в которых ведётся учёт выпуска этой продукции:

Можно складывать матрицы такого вида, в которых учтён выпуск аналогичной продукции различными предприятиями, чтобы получить суммарные данные по отрасли.

Или матрицы, состоящие, к примеру, из одного столбца, в которых строки - средняя себестоимость того или иного вида продукции:

Матрицы двух последних видов можно умножать, а в результате получится матрица-строка, содержащая себестоимость всех видов продукции по годам.

Матрицы, основные определения

Прямоугольная таблица, состоящая из чисел, расположенных в m строках и n столбцах, называется mn-матрицей (или просто матрицей ) и записывается так:

(1)

В матрице (1) числа называются её элементами (как и в определителе, первый индекс означает номер строки, второй – столбца, на пересечении которых стоит элемент; i = 1, 2, ..., m ; j = 1, 2, n ).

Матрица называется прямоугольной , если .

Если же m = n , то матрица называется квадратной , а число n – её порядком .

Определителем квадратной матрицы A называется определитель, элементами которого являются элементы матрицы A . Он обозначается символом |A |.

Квадратная матрица называется неособенной (или невырожденной , несингулярной ), если её определитель не равен нулю, и особенной (или вырожденной , сингулярной ), если её определитель равен нулю.

Матрицы называются равными , если у них одинаковое число строк и столбцов и все соответствующие элементы совпадают.

Матрица называется нулевой , если всё её элементы равны нулю. Нулевую матрицу будем обозначать символом 0 или .

Например,

Матрицей-строкой (или строчной ) называется 1n -матрица, а матрицей-столбцом (или столбцовой ) – m 1-матрица.

Матрица A " , которая получается из матрицы A заменой в ней местами строк и столбцов, называется транспонированной относительно матрицы A . Таким образом, для матрицы (1) транспонированной является матрица

Операция перехода к матрице A " , транспонированной относительно матрицы A , называется транспонированием матрицы A . Для mn -матрицы транспонированной является nm -матрица.

Транспонированной относительно матрицы является матрица A , то есть

(A ")" = A .

Пример 1. Найти матрицу A " , транспонированную относительно матрицы

и выяснить, равны ли определители исходной и транспонированной матриц.

Главной диагональю квадратной матрицы называется воображаемая линия, соединяющая её элементы, у которых оба индекса одинаковые. Эти элементы называются диагональными .

Квадратная матрица, у которой все элементы вне главной диагонали равны нулю, называется диагональной . Не обязательно все диагональные элементы диагональной матрицы отличны от нуля. Среди них могут быть и равные нулю.

Квадратная матрица, у которой элементы, стоящие на главной диагонали равны одному и тому же числу, отличному от нуля, а все прочие равны нулю, называется скалярной матрицей .

Единичной матрицей называется диагональная матрица, у которой все диагональные элементы равны единице. Например, единичной матрицей третьего порядка является матрица

Пример 2. Даны матрицы:

Решение. Вычислим определители данных матриц. Пользуясь правилом треугольников, найдём

Определитель матрицы B вычислим по формуле

Легко получаем, что

Следовательно, матрицы A и – неособенные (невырожденные, несингулярные), а матрица B – особенная (вырожденная, сингулярная).

Определитель единичной матрицы любого порядка, очевидно, равен единице.

Решить задачу на матрицы самостоятельно, а затем посмотреть решение

Пример 3. Даны матрицы

,

,

Установить, какие из них являются неособенными (невырожденными, несингулярными).

Применение матриц в математико-экономическом моделировании

В виде матриц просто и удобно записываются структурированные данные о том или ином объекте. Матричные модели создаются не только для хранения этих структурированных данных, но и для решения различных задач с этими данными средствами линейной алгебры.

Так, известной матричной моделью экономики является модель "затраты-выпуск", внедрённая американским экономистом русского происхождения Василием Леонтьевым. Эта модель исходит из предположения, что весь производственный сектор экономики разбит на n чистых отраслей. Каждая из отраслей выпускает продукцию только одного вида и разные отрасли выпускают разную продукцию. Из-за такого разделения труда между отраслями существуют межотраслевые связи, смысл которых состоит в том, что часть продукции каждой отрасли передаётся другим отраслям в качестве ресурса производства.

Объём продукции i -й отрасли (измеряемый определённой единицей измерения), которая была произведена за отчётный период, обозначается через и называется полным выпуском i -й отрасли. Выпуски удобно разместить в n -компонентную строку матрицы.

Количество единиц продукции i -й отрасли, которое необходимо затратить j -й отрасли для производства единицы своей продукции, обозначается и называется коэффициентом прямых затрат.

Матрица - это особый объект в математике. Изображается в форме прямоугольной или квадратной таблицы, сложенной из определенного числа строк и столбцов. В математике имеется большое разнообразие видов матриц, различающихся по размерам или содержанию. Числа ее строк и столбцов именуются порядками. Эти объекты употребляются в математике для упорядочивания записи систем линейных уравнений и удобного поиска их результатов. Уравнения с использованием матрицы решаются посредством метода Карла Гаусса, Габриэля Крамера, миноров и алгебраических дополнений, а также многими другими способами. Базовым умением при работе с матрицами является приведение к Однако для начала давайте разберемся, какие виды матриц выделяют математики.

Нулевой тип

Все компоненты этого вида матрицы - нули. Между тем, число ее строк и столбцов абсолютно различно.

Квадратный тип

Количество столбцов и строк этого вида матрицы совпадает. Иначе говоря, она представляет собой таблицу формы "квадрат". Число ее столбцов (или строк) именуются порядком. Частными случаями считается существование матрицы второго порядка (матрица 2x2), четвертого порядка (4x4), десятого (10x10), семнадцатого (17x17) и так далее.

Вектор-стобец

Это один из простейших видов матриц, содержащий только один столбец, который включает в себя три численных значения. Она представляет ряд свободных членов (чисел, независимых от переменных) в системах линейных уравнений.

Вид, аналогичный предыдущему. Состоит из трех численных элементов, в свою очередь организованных в одну строку.

Диагональный тип

Числовые значения в диагональном виде матрицы принимают только компоненты главной диагонали (выделена зеленым цветом). Основная диагональ начинается с элемента, находящегося в левом верхнем углу, а заканчивается элементом в правом нижнем соответственно. Остальные компоненты равны нулю. Диагональный тип представляет собой только квадратную матрицу какого-либо порядка. Среди матриц диагонального вида можно выделить скалярную. Все ее компоненты принимают одинаковые значения.

Подвид диагональной матрицы. Все ее числовые значения являются единицами. Используя единичный тип матричных таблиц, выполняют ее базовые преобразования или находят матрицу, обратную исходной.

Канонический тип

Канонический вид матрицы считается одним из основных; приведение к нему часто необходимо для работы. Число строк и столбцов в канонической матрице различно, она необязательно принадлежит к квадратному типу. Она несколько похожа на единичную матрицу, однако в ее случае не все компоненты основной диагонали принимают значение, равное единице. Главнодиагональных единиц может быть две, четыре (все зависит от длины и ширины матрицы). Или единицы могут не иметься вовсе (тогда она считается нулевой). Остальные компоненты канонического типа, как и элементы диагонального и единичного, равны нулю.

Треугольный тип

Один из важнейших видов матрицы, применяемый при поиске ее детерминанта и при выполнении простейших операций. Треугольный тип происходит от диагонального, поэтому матрица также является квадратной. Треугольный вид матрицы подразделяют на верхнетреугольный и нижнетреугольный.

В верхнетреугольной матрице (рис. 1) только элементы, которые находятся над главной диагональю, принимают значение, равное нулю. Компоненты же самой диагонали и части матрицы, располагающейся под ней, содержат числовые значения.

В нижнетреугольной (рис. 2), наоборот, элементы, располагающиеся в нижней части матрицы, равны нулю.

Вид необходим для нахождения ранга матрицы, а также для элементарных действий над ними (наряду с треугольным типом). Ступенчатая матрица названа так, потому что в ней содержатся характерные "ступени" из нулей (как показано на рисунке). В ступенчатом типе образуется диагональ из нулей (необязательно главная), и все элементы под данной диагональю тоже имеют значения, равные нулю. Обязательным условием является следующее: если в ступенчатой матрице присутствует нулевая строка, то остальные строки, находящиеся ниже нее, также не содержат числовых значений.

Таким образом, мы рассмотрели важнейшие типы матриц, необходимые для работы с ними. Теперь разберемся с задачей преобразования матрицы в требуемую форму.

Приведение к треугольному виду

Как же привести матрицу к треугольному виду? Чаще всего в заданиях нужно преобразовать матрицу в треугольный вид, чтобы найти ее детерминант, по-другому называемый определителем. Выполняя данную процедуру, крайне важно "сохранить" главную диагональ матрицы, потому что детерминант треугольной матрицы равен именно произведению компонентов ее главной диагонали. Напомню также альтернативные методы нахождения определителя. Детерминант квадратного типа находится при помощи специальных формул. Например, можно воспользоваться методом треугольника. Для других матриц используют метод разложения по строке, столбцу или их элементам. Также можно применять метод миноров и алгебраических дополнений матрицы.

Подробно разберем процесс приведения матрицы к треугольному виду на примерах некоторых заданий.

Задание 1

Необходимо найти детерминант представленной матрицы, используя метод приведения его к треугольному виду.

Данная нам матрица представляет собой квадратную матрицу третьего порядка. Следовательно, для ее преобразования в треугольную форму нам понадобится обратить в нуль два компонента первого столбца и один компонент второго.

Чтобы привести ее к треугольному виду, начнем преобразование с левого нижнего угла матрицы - с числа 6. Чтобы обратить его в нуль, умножим первую строку на три и вычтем ее из последней строки.

Важно! Верхняя строка не изменяется, а остается такой же, как и в исходной матрице. Записывать строку, в четыре раза большую исходной, не нужно. Но значения строк, компоненты которых нужно обратить в нуль, постоянно меняются.

Осталось только последнее значение - элемент третьей строки второго столбца. Это число (-1). Чтобы обратить его в нуль, из первой строки вычтем вторую.

Выполним проверку:

detA = 2 x (-1) x 11 = -22.

Значит, ответ к заданию: -22.

Задание 2

Нужно найти детерминант матрицы методом приведения его к треугольному виду.

Представленная матрица принадлежит к квадратному типу и является матрицей четвертого порядка. Значит, необходимо обратить в нуль три компонента первого столбца, два компонента второго столбца и один компонент третьего.

Начнем приведение ее с элемента, находящегося в нижнем углу слева, - с числа 4. Нам нужно обратить данное число в нуль. Удобнее всего сделать это, умножив на четыре верхнюю строку, а затем вычесть ее из четвертой. Запишем итог первого этапа преобразования.

Итак, компонент четвертой строки обращен в нуль. Перейдем к первому элементу третьей строки, к числу 3. Выполняем аналогичную операцию. Умножаем на три первую строку, вычитаем ее из третьей строки и записываем результат.

Нам удалось обратить в нуль все компоненты первого столбца данной квадратной матрицы, за исключением числа 1 - элемента главной диагонали, не требующего преобразования. Теперь важно сохранить полученные нули, поэтому будем выполнять преобразования со строками, а не со столбцами. Перейдем ко второму столбцу представленной матрицы.

Снова начнем с нижней части - с элемента второго столбца последней строки. Это число (-7). Однако в данном случае удобнее начать с числа (-1) - элемента второго столбца третьей строки. Чтобы обратить его в нуль, вычтем из третьей строки вторую. Затем умножим вторую строку на семь и вычтем ее из четвертой. Мы получили нуль вместо элемента, расположенного в четвертой строке второго столбца. Теперь перейдем к третьему столбцу.

В данном столбце нам нужно обратить в нуль только одно число - 4. Сделать это несложно: просто прибавляем к последней строке третью и видим необходимый нам нуль.

После всех произведенных преобразований мы привели предложенную матрицу к треугольному виду. Теперь, чтобы найти ее детерминант, нужно только произвести умножение получившихся элементов главной диагонали. Получаем: detA = 1 x (-1) x (-4) x 40 = 160. Следовательно, решением является число 160.

Итак, теперь вопрос приведения матрицы к треугольному виду вас не затруднит.

Приведение к ступенчатому виду

При элементарных операциях над матрицами ступенчатый вид является менее "востребованным", чем треугольный. Чаще всего он используется для нахождения ранга матрицы (т. е. количества ее ненулевых строк) или для определения линейно зависимых и независимых строк. Однако ступенчатый вид матрицы является более универсальным, так как подходит не только для квадратного типа, но и для всех остальных.

Чтобы привести матрицу к ступенчатому виду, сначала нужно найти ее детерминант. Для этого подойдут вышеназванные методы. Цель нахождения детерминанта такова: выяснить, можно ли преобразовать ее в ступенчатый вид матрицы. Если детерминант больше или меньше нуля, то можно спокойно приступать к заданию. Если же он равен нулю, выполнить приведение матрицы к ступенчатому виду не получится. В таком случае нужно проверить, нет ли ошибок в записи или в преобразованиях матрицы. Если подобных неточностей нет, задание решить невозможно.

Рассмотрим, как привести матрицу к ступенчатому виду на примерах нескольких заданий.

Задание 1. Найти ранг данной матричной таблицы.

Перед нами квадратная матрица третьего порядка (3x3). Мы знаем, что для нахождения ранга необходимо привести ее к ступенчатому виду. Поэтому сначала нам необходимо найти детерминант матрицы. Воспользуемся методом треугольника: detA = (1 x 5 x 0) + (2 x 1 x 2) + (6 x 3 x 4) - (1 x 1 x 4) - (2 x 3 x 0) - (6 x 5 x 2) = 12.

Детерминант = 12. Он больше нуля, значит, матрицу можно привести к ступенчатому виду. Приступим к ее преобразованиям.

Начнем его с элемента левого столбца третьей строки - числа 2. Умножаем верхнюю строку на два и вычитаем ее из третьей. Благодаря этой операции как нужный нам элемент, так и число 4 - элемент второго столбца третьей строки - обратились в нуль.

Мы видим, что в результате приведения образовалась треугольная матрица. В нашем случае продолжить преобразование нельзя, так как остальные компоненты не удастся обратить в нуль.

Значит, делаем вывод, что количество строк, содержащих числовые значения, в данной матрице (или ее ранг) - 3. Ответ к заданию: 3.

Задание 2. Определить количество линейно независимых строк данной матрицы.

Нам требуется найти такие строки, которые нельзя какими-либо преобразованиями обратить в нуль. Фактически нам нужно найти количество ненулевых строк, или ранг представленной матрицы. Для этого выполним ее упрощение.

Мы видим матрицу, не принадлежащую к квадратному типу. Она имеет размеры 3x4. Начнем приведение также с элемента левого нижнего угла - числа (-1).

Дальнейшие ее преобразования невозможны. Значит, делаем вывод, что количество линейно независимых строк в ней и ответ к заданию - 3.

Теперь приведение матрицы к ступенчатому виду не является для вас невыполнимым заданием.

На примерах данных заданий мы разобрали приведение матрицы к треугольному виду и ступенчатому виду. Чтобы обратить в нуль нужные значения матричных таблиц, в отдельных случаях требуется проявить фантазию и правильно преобразовать их столбцы или строки. Успехов вам в математике и в работе с матрицами!

Сегодня это действительно слишком просто: вы можете подойти к компьютеру и практически без знания того, что вы делаете, создавать разумное и бессмыслицу с поистине изумительной быстротой. (Дж. Бокс)

Основные сведения о матрицах

В этом разделе мы даем основные сведения о матрицах, необходимые для понимания статистики и анализа данных.

Матрицей размера m x n (читается m на n ) называется прямоугольная таблица чисел, содержащая m строк и n столбцов.

Числа, составляющие матрицу, называются элементами матрицы.

Матрицы обозначаются прописными (заглавными) буквами латинского алфавита, например, A , B , C ,….

Для обозначения элементов матрицы используются строчные буквы с двойным индексом, например: a ij , где i - номер строки, j - номер столбца.

Например, матрица:

В сокращенной записи обозначаем A =(a ij ) ; i =1,2,…m ; j =1,2,…,n

Приведем пример матрицы 2 на 2:

Вы видите, что a 11 = 1, a 12 = 0, a 21 = 2, a 22 =5

Наряду с круглыми скобками используются и другие обозначения матрицы:

Две матрицы A и B одного размера называются равными , если они совпадают поэлементно, a ij = b ij для любых i =1,2,…m ; j =1,2,…n

Виды матриц

Матрица, состоящая из одной строки, называется матрицей (вектором) - строкой, а из одного столбца - матрицей (вектором)- столбцом:

A=(a 11 ,a 12 ,…,a 1n) - матрица - строка

Матрица называется квадратной n -го порядка, если число ее строк равно числу столбцов и равно n .

Например,

Элементы матрицы a ij , у которых номер столбца равен номеру строки образуют главную диагональ матрицы. Для квадратной матрицы главную диагональ образуют элементы a 11 , a 22 ,…,a nn .

Если все недиагональные элементы квадратной матрицы равны нулю, то матрица называется диагональной .

Операции над матрицами

Над матрицами, как и над числами, можно производить ряд операций, причем некоторые из них аналогичны операциями над числами, а некоторые - специфические.

1. Умножение матрицы на число. Произведение матрицы А на число называется матрица B=A, элементы которой b ij =a ij для i=1,2,…m; j=1,2,…n

Следствие: Общий множитель всех элементов матрицы можно выносить за знак матрицы.

В частности, произведение матрицы А на число 0 есть нулевая матрица.

2. Сложение матриц. Суммой двух матриц А и В одинакового размера m называется матрица С=А+В, элементы которой c ij =a ij +b ij для i=1,2,…m; j=1,2,…n (т.е. матрицы складываются поэлементно).

3. Вычитание матриц. Разность двух матриц одинакового размера определяется через предыдущие операции: A -B =A +(-1)∙B .

4. Умножение матриц. Умножение матрицы А на матрицу В определено, когда число столбцов первой матрицы равно числу строк второй. Тогда произведением матриц A m ∙B k называется такая матрица C m , каждый элемент которой cij равен сумме произведений элементов i-ой строки матрицы А на соответствующие элементы j-го столбца матрицы В:

i =1,2,…,m; j=1,2,…,n

Многие свойства, присущие операциям над числами, справедливы и для операций над матрицами (что следует из этих операций):

A+B=B+A

(A+B)+C=A+(B+C)

λ (A+B)= λA + λB

A( B+C)=AB+AC

(A+B)C=AC+BC

λ (AB)=(λA )B=A(λB )

A( BC)=(AB)C

Однако имеются и специфические свойства матриц. Так, операция умножения матриц имеет некоторые отличия от умножения чисел:

a) Если АВ существует, то после перестановки сомножителей местами произведение матриц ВА может и не существовать.

Прямоугольной матрицей размера mxn называется совокупность mxn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Мы будем записывать ее в виде

или сокращенно в виде A = (a i j) (i = ; j = ), числа a i j , называются ее элементами; первый индекс указывает на номер строки, второй - на номер столбца. A = (a i j) и B = (b i j) одинакового размера называются равными, если попарно равны их элементы, стоящие на одинаковых местах, то есть A = B, если a i j = b i j .

Матрица, состоящая из одной строки или одного столбца, называется соответственно -строкой или вектор-столбцом. Вектор-столбцы и вектор-строки называют просто векторами.

Матрица, состоящая из одного числа, отождествляется с этим числом. A размера mxn, все элементы которой равны нулю, называются нулевой и обозначается через 0. Элементы с одинаковыми индексами называют элементами главной диагонали. Если число строк равно числу столбцов, то есть m = n, то матрицу называют квадратной порядка n. Квадратные матрицы, у которых отличны от нуля лишь элементы главной диагонали, называются диагональными и записываются так:

.

Если все элементы a i i диагонали равны 1, то она называется единичной и обозначается буквой Е:

.

Квадратная матрица называется треугольной, если все элементы, стоящие выше (или ниже) главной диагонали, равны нулю. Транспонированием называется такое преобразование, при котором строки и столбцы меняются местами с сохранением их номеров. Обозначается транспонирование значком Т наверху.

Если в (4.1) переставим строки со столбцами, то получим

,

которая будет транспонированной по отношению к А. В частности, при транспонировании вектора-столбца получается вектор-строка и наоборот.

Произведением А на число b называется матрица, элементы которой получаются из соответствующих элементов А умножением на число b: b A = (b a i j).

Суммой А = (a i j) и B = (b i j) одного размера называется C = (c i j) того же размера, элементы которой определяются по формуле c i j = a i j + b i j .

Произведение АВ определяется в предположении, что число столбцов А равно числу строк В.

Произведением AB, где А = (a i j) и B = (b j k), где i = , j= , k= , заданных в определенном порядке АВ, называется С = (c i k), элементы которой определяются по следующему правилу:

c i k = a i 1 b 1 k + a i 2 b 2 k +... + a i m b m k = a i s b s k . (4.2)

Иначе говоря, элемент произведения AB определяются следующим образом: элемент i-й строки и k-го столбца С равен сумме произведений элементов i-й строки А на соответствующие элементы k-го столбца В.

Пример 2.1. Найти произведение AB и .

Решение. Имеем: А размера 2x3, В размера 3x3, тогда произведение АВ = С существует и элементы С равны

С 11 = 1×1 +2×2 + 1×3 = 8, с 21 = 3×1 + 1×2 + 0×3 = 5, с 12 = 1×2 + 2×0 + 1×5 = 7,

с 22 =3×2 + 1×0 + 0×5 = 6, с 13 = 1×3 + 2×1 + 1×4 = 9, с 23 = 3×3 + 1×1 + 0×4 = 10.

, а произведение BA не существует.

Пример 2.2. В таблице указано количество единиц продукции, отгружаемой ежедневно на молокозаводах 1 и 2 в магазины М 1 , М 2 и М 3 , причем доставка единицы продукции с каждого молокозавода в магазин М 1 стоит 50 ден. ед., в магазин М 2 - 70, а в М 3 - 130 ден. ед. Подсчитать ежедневные транспортные расходы каждого завода.

Молокозавод

Решение. Обозначим через А матрицу, данную нам в условии, а через
В - матрицу, характеризующую стоимость доставки единицы продукции в магазины, т.е.,

,

Тогда матрица затрат на перевозки будет иметь вид:

Итак, первый завод ежедневно тратит на перевозки 4750 ден. ед., второй - 3680 ден.ед.

Пример 2.3. Швейное предприятие производит зимние пальто, демисезонные пальто и плащи. Плановый выпуск за декаду характеризуется вектором X = (10, 15, 23). Используются ткани четырех типов Т 1 , Т 2 , Т 3 , Т 4 . В таблице приведены нормы расхода ткани (в метрах) на каждое изделие. Вектор С = (40, 35, 24, 16) задает стоимость метра ткани каждого типа, а вектор P = (5, 3, 2, 2) - стоимость перевозки метра ткани каждого вида.

Расход ткани

Зимнее пальто

Демисезонное пальто