Способы увеличения скорости осаждения. Расчет скорости осаждения капель при известном их диаметре. Очистка сточных вод экстракцией

Осаждение - это процесс разделения жидких или газовых неоднородных систем, при котором взвешенные в жидкости или газе твердые или жидкие частицы отделяются от сплошной фазы под действием силы тяжести, сил инерции (в том числе центробежных) или электростатических сил.

Осаждение, происходящее под действием силы тяжести, называется отстаиванием. В основное отстаивание применяется для предварительного, грубого разделения неоднородных систем.

Основной характеристикой рассматриваемого процесса разделения суспензий и газовзвесей является скорость осаждения, т.е. скорость относительного движения твердых частиц. При определении этой скорости необходимо различать свободное и стесненное осаждение. Свободное осаждение, наблюдающееся в разбавленных суспензиях и газовзвесях, характеризуется отсутствием взаимного влияния частиц дисперсной фазы, т.е. каждая из них ведет себя как одиночная частица в окружающей сплошной среде.

С ростом концентрации твердой фазы, благодаря взаимному влиянию пограничных слоев и столкновения соседних твердых частиц, осаждение становится стесненным, сопротивление частиц потоку возрастает и скорость их движения падает.

Рассмотрим прямолинейное равномерное движение

частицы, подчиняющееся закону Ньютона. При движении

частица встречает сопротивление среды, которое может

быть определено

где S ч - проекция поперечного сечения частицы на

направление ее движения, м 2 ; р 0 - плотность среды, кг/м 3 ;

w ч - скорость частицы, м/с; ς ч - аэродинамический

коэффициент сопротивления частицы. Коэффициент сопротивления частицы ς ч зависит от числа Рейнольдса Re v . Для шаровой частицы



здесь μ 0 - динамическая вязкость воздуха (газа), Па-с; d ч, -диаметр частицы, м.

Эта формула выражает закон Стокса: сила сопротивления, испытываемая твердым шаровым телом при медленном движении в неограниченной вязкой среде, прямо пропорциональна скорости поступательного движения, диаметру тела и вязкости среды.

Закон Стокса применим при ламинарном движении частиц, когда Re ч <2. Область применения закона Стокса практически - определяется размерами частиц и требуемой точностью: при 16·10 -4 < d ч < 30·10 -4 см, неточность составляет 1 %; при 1,6·10-4 < d ч <70·10 -4 см - 10 %. Если допустима большая неточность, можно распространить формулу на область 10 -5

Для точных вычислений в закон Стокса вводится поправка Кенингема С к для частиц размером 0,2-2,0 мкм:

Пылевые частицы малых размеров участвуют в броуновском движении - беспорядочном хаотическом перемещении частиц под действием ударов молекул. Чем меньше размер частицы, тем большую роль в ее перемещении играет броуновское движение.

Скорость осаждения и величина броуновского смещения соизмеримы для частиц, начиная примерно с 0,5 мкм. С уменьшением размера частиц скорость осаждения резко снижается и возрастает броуновское смещение. Для частиц размером 0,05...0,02 мкм оно уже на два - три порядка превышает путь частицы при свободном падении. Поэтому высокодисперсные аэрозольные частицы практически не осаждаются, а благодаря броуновскому движению перемещаются в любом направлении.

Если рассматривается движение нешарообразной частицы, в расчетных формулах значение ς ч умножается на динамический коэффициент формы z вместо d ч вводят

эквивалентный диаметр: z=d э 3 /d ч 3

где d э - эквивалентный диаметр частицы, равный диаметру шара, объем которого равен объему данной частицы, м.

В движении частицы, осаждающейся под действием силы тяжести в неподвижной среде, можно различить три стадии: начальной момент падения; движение с увеличением скорости до того момента, пока силы сопротивления и силы тяжести не уравновесятся; равномерное движение с постоянной скоростью. Первые две стадии имеют малую продолжительность.

1. Цель работы - определение опытных значений скорости осаждения и сравнение с расчетными.

2.Теоретические сведения.

Для правильного проектирования пылеулавливающих аппаратов (и пылеотборных устройств) необходимо знать, как движутся частицы под действием внешних сил.

Пылевая частица, осаждаясь под действием гравитационной силы, испытывает сопротивление газообразной среды. Вектор этой силы направлен в сторону, обратную движению частицы. Режим движения среды может быть вязким и турбулентным, что характеризуется соответствующей величиной числа Рейнольдса - Re. Принято весь диапазон чисел Re от 0 до ¥ делить на три области. В каждой такой области сопротивление движению частицы F c имеет определенную закономерность: область закона Стокса, область закона Ньютона, промежуточная область. Скорость осаждения частиц также зависит от величины Re и рассчитывается по соответствующим формулам.

Сопротивление среды в зависимости от числа Рейнольдса -Re

При медленном движении частицы увлекаемые ею слои среды имеют строго ламинарный, слоистый характер движения. Сопротивление среды при этом складывается из суммы сил внутреннего трения между этими слоями и выражается законом Стокса. Для сферической частицы сила сопротивления по Стоксу равна

где – диаметр частицы, м;

– вязкость среды, Па;

– скорость движения частиц, м/с.

Формула Стокса справедлива для Re < 1.

Увеличение скорости движения частицы вызывает турбулизацию среды. Силы инерции становятся значительно больше сил вязкости.

Среда приближается по своим свойствам к идеальной жидкости. Для больших скоростей (Re > 500) сопротивление среды будет обусловлено только инерцией ее перехода из спокойного состояния в движение под действием движущейся частицы. Это сопротивление среды можно определить по закону Ньютона для идеальной, не имеющей вязкости жидкости. В общем виде для частицы диаметром , расположенной в потоке, сила сопротивления среды плотностью , Н, равна

;................................................................................. .(2)

где – коэффициент сопротивления, зависящий от режима движения и формы тела.

В области Re > 500 опыт показывает, что для диска, расположенного перпендикулярно потоку, = 1,12; для шара - = 0,44. Следовательно, для сферической частицы турбулентное сопротивление среды (по Ньютону), Н, можно записать следующим образом:

;........................................................................... .(3)

В опытах также установлено, что формула Ньютона справедлива для относительно крупных частиц.



По многочисленным экспериментальным данным построена зависимость для сферических тел (рис.4.) (т.н. стандартная кривая). Для области действия закона Стокса, т.е. для области ламинарного сопротивления, пропорционального скорости движения частицы в первой степени, коэффициент сопротивления можно выразить так:

.............................................................(4)

Формула (41) верна, если Re < 1 и размеры частиц мкм. В промежуточной области значений Re от 1 до 500 нельзя пренебречь турбулентным сопротивлением среды. Здесь коэффициент сопротивления изменяется пропорционально . С увеличением числа Re значение непрерывно возрастает от единицы до двух. Хорошие результаты дает формула , где А = 24...5,8 = 1...0,37. При Re > 500 можно полностью пренебречь вязким сопротивлением. В этой области для шарообразных тел = 0.44.

При дальнейшем увеличении числа Re до 10 5 коэффициент сопротивления остается примерно постоянной величиной (рис.4).

Применимость закона Стокса имеет и нижний предел, определяемый такими мелкими частицами (d << 1 мкм), что они становятся чувствительными к ударам молекул и находятся в броуновском движении. Здесь вводится поправка Канингема.

Скорость осаждения частиц

Знание законов сопротивления среды при осаждении частиц, как было сказано выше, необходимо для определения скорости их осаждения. Известно, что под действием любой силы тело движется ускоренно. Так как с увеличением скорости движения увеличивается и сопротивление среды, то в ходе осаждения неизбежно должен наступать такой момент, когда сопротивление среды F станет равным движущей силе Р, т.е. когда вся движущая сила расходуется только на преодоление сопротивления среды, и движение становится установившимся, а ускорение равным нулю. С этого момента частица осаждается с постоянной установившейся скоростью.

Рис.4. Зависимость для сферических частиц



Из сказанного следует, что скорость осаждения определяется путем приравнивания силы сопротивления среды движущей силе F=P.

При осаждении сферических частиц под действием тяжести в условиях применимости закона Стокса возникает равенство:

, (5)

, (6)

где – постоянная времени или время релаксации.

Это выражение справедливо, когда число .

При осаждении сферических частиц под действием силы тяжести в условиях применимости закона Ньютона (Re < 500) запишем аналогично

(7)

Выражение справедливо только тогда, когда Re >500.

Скорость осаждения частиц в промежуточной области 1 < Re < 500 можно определять по формуле

(8)

где – критерий Архимеда,

Порядок расчета скорости таков: определив значение числа , по формуле (8) находят число Re и далее искомую скорость осаждения

, (9)

Влияние формы частицы на процесс осаждения.

Все приведенные выражения для сопротивления среды, а следовательно, и скорости осаждения справедливы, как указывалось выше, для шарообразных частиц. В технике, как правило, частицы пыли неправильной формы. Коэффициент сопротивления среды является функцией не только числа Re, но и формы частицы. В то же время влияние формы на коэффициент сопротивления также зависит от режима движения среды, вызванного движением частицы, т.е. от числа Re. Из-за влияния формы расчет скорости осаждения частиц в технологических аппаратах является приближенным, т.к. вводится эквивалентный их диаметр.

В большинстве случаев скорость осаждения частиц несферической формы меньше, чем сферической при равных эквивалентных диаметрах. Эквивалентный диаметр частицы определяется по ее массе .

, (10)

Если влиянием формы можно пренебречь, то скорость осаждения таких частиц рассчитывают по формуле (6) или (9) с учетом (10). Для учета влияния формы на скорость осаждения можно применять следующие теоретические формулы:

, (11)

для диска радиусом , падающего

плашмя , (12)

ребром , (13)

Влияние стесненности движения осаждающейся частицы на скорость осаждения

Стесненность движения осаждающейся частицы возникает при прохождении ее траектории вблизи вертикальной стенки. Величину поправки () на скорость осаждения () можно определить по одной из формул: при прохождении частицы на расстоянии от плоской стенки ; при осаждении частицы между двумя плоскими стенками, находящимися на расстоянии друг от друга, , или при осаждении частицы по оси трубки диаметром

.

В данной лабораторной работе определяется опытная и расчетная скорость осаждения в глицерине стальных шариков разных диаметров и частиц сложной формы типа тонких цилиндров и дисков.

3. Описание установки

Лабораторная установка для определения скорости осаждения частиц состоит из стеклянного цилиндра с нанесенными на нем метками (ниже участка установления равномерной скорости), расстояние между которыми равно 0,1 м. Цилиндр заполнен глицерином до уровня примерно 1 м от его дна.

В комплект оборудования входит микрометр для определения диаметра шариков, ареометр для определения плотности глицерина, секундомер для замера времени осаждения частиц, весы для определения массы частиц несферической формы.

4. Порядок проведения работы

1. Перед началом работы на установке получить допуск у преподавателя по знанию техники безопасности.

2. Микрометром измерить диаметры всех шариков, выданных преподавателем или лаборантом.

3. Каждый шарик поочередно осторожно опустить на поверхность глицерина ближе к центру цилиндра. При прохождении шариком верхней метки включить секундомер и следить за движением шарика. При достижении нижней метки выключить секундомер и таким образом засечь продолжительность t прохождения шариком пути h = 0,7...0,8 м (расстояние уточнить).

4. Ареометром измерить плотность глицерина.

5. На весах определить массу несферических частиц.

6. Определить время осаждения двух одинаковых шариков на расстоянии и 2 от стенки цилиндра.

7. Результаты всех замеров внести в табл. 2 и приступить к обработке результатов.

5. Обработка результатов опыта.

1. Опытную скорость осаждения всех шариков определить так же, как и скорость осаждения самого маленького шарика: м/с. Результаты вычисления внести в табл. 3.

2. По опытному значению скорости осаждения самого маленького шарика , используя уравнение (6), определить вязкость глицерина Па.с.

Полученное значение занести в табл. 2

Таблица 2

Результат опытов по осаждению частиц

№ п/п Размер частиц, , м Путь осаждения, , м Время осаждения, , с Наименование измеряемых величин Единица измерения Величина
Плотность частиц, кг/м 3
Плотность глицерина, кг/м 3
Вязкость глицерина, кг/м 3 Опред-ся в опыте

Таблица 3 .

По численному значению критерия по формуле (8) определить число и отсюда искомую скорость осаждения м/с.

.

Результаты вычислений внести в табл. 3.

6. Требования к отчету. Отчет должен содержать:

6.1. Краткое изложение теории и цель работы.

6.2. Заполненные табл. 107 и 108.

6.3. Расчет вязкости для табл. 107 и расчет одной-двух строк из табл. 108.

6.4. Анализ полученных результатов и выводы.

7. Контрольные вопросы

7.1. Какова область применимости закона Стокса и закона Ньютона для определения силы сопротивления при осаждении частицы?

7.2. Каков вид обобщенного закона сопротивления среды?

7.3. Чему равен коэффициент сопротивления для шара при Re ; при Re>500 и 1 < Re <500 ?

7.4. Чему равна скорость осаждения сферической частицы при Re (закон Стокса); при Re>500 (закон Ньютона)?

7.5. Как определяется скорость осаждения для промежуточной области Re(l

7.6. Какова цель работы?

7.7. Расскажите порядок проведения экспериментальной части работы?

7.9. В чем заключается метод определения вязкости жидкости, основанный на законе Стокса?

ЛАБОРАТОРНАЯ РАБОТА № 3

При скорости потока порозность приближается к единице. Поэтому можно рассматривать взаимодействие потока жидкости
и отдельной частицы. Скорость соответствует верхней границе режима псевдоожижения, при этом частица неподвижно витает в потоке. Эту скорость называют скоростью витания . Для случая витания вес частицы полностью уравновешивается силовым воздействием жидкостного потока.

Этот случай силового взаимодействия реализуется
и для случая, когда твердая частица падает с постоянной скоростью , называемой скоростью осаждения, в неограниченном объеме неподвижной среды. Следовательно = .

При ламинарном обтекании тела сопротивление потока зависит
в основном от вязкости среды; при турбулентном – от поверхности
тела отрываются вихри, которые создают за ним область пониженного давления (рис. 3.4).

а ) б )

Рис. 3.4. Обтекание потоком сферы:

а – ползущее течение; б – отрыв пограничного слоя

Рассмотрим осаждение сферической частицы диаметром . Запишем условие равновесия сил:

(3.21)

где – сила сопротивления потока, – вес частицы, – выталкивающая (архимедова) сила. Силу можно выразить по аналогии с потерянным давлением с использованием коэффициента гидравлического сопротивления x (ф-ла Дарси Вейсбаха с местным сопротивлением):

(3.22)

где S – площадь поперечного сечения сферы , r – плотность среды, x – коэффициент гидравлического сопротивления .

Для сферы очевидно (mg-Fa) :

(3.23)

где – плотность твердой частицы. Тогда получим:

(3.24)

Из (3.24) найдем значение :

(3.25)

Рассмотрим более подробно коэффициент гидравлического сопротивления x. Силу сопротивления потока можно представить в виде суммы сил лобового сопротивления и сопротивления трения :

(3.26)

Тогда и коэффициент гидравлического сопротивления x может быть выражен зависимостью:

где – коэффициент лобового сопротивления, – коэффициент сопротивления трения.

При ламинарном течении частица плавно обтекается потоком жидкости (ползущее течение) и энергия расходуется только
на преодоление трения. С увеличением скорости потока всё большую роль играет лобовое сопротивление, и с какого-то момента сопротивлением трения можно будет пренебречь. Тогда увеличение скорости потока
не приведет к изменению , наступает автомодельный режим (рис. 3.5).

Рис. 3.5. Зависимость коэффициента гидравлического сопротивления x
от режима обтекания сферы

Для случая ламинарного режима осаждения можно получить теоретическим путем значение x:

Тогда из (3.35) получим:

(3.29)

Полученная зависимость называется законом осаждения Стокса. Закон Стокса справедлив для области . В области действия закона Ньютона (в условиях автомодельности критерия ) коэффициент гидравлического сопротивления Тогда из (3.25) будем иметь:

(3.30)

В промежуточной области для x предлагается следующая формула:

Для того чтобы определить режим обтекания частицы потоком жидкости и, следовательно, выбрать формулу для расчета скорости , необходимо знать величину , а содержит искомую величину .

Задачу можно решить методом последовательных приближений. Однако этого трудоемкого процесса можно избежать. Преобразуем уравнение (3.25), вводя критерии и Ar, и получим:

(3.32)

Из (3.32) определим границы промежуточной зоны по критерию Архимеда Ar:

для получим Ar = 36;

для получим Ar = 8,3 · 10 4 .

Как известно, критерий Архимеда не содержит искомую величину .

Тогда можно предложить следующий порядок расчета скорости витания (осаждения):

– определяем значения критерия Архимеда Ar;

– определяем зону расчета x и выбираем расчетную формулу;

– для данной зоны по соответствующей формуле определяем значение скорости .

Скорость осаждения частиц несферической формы меньше, чем у сферических частиц:

w " ос = j ф w ос.

Здесь j ф < 1 – коэффициент формы, значение которых определяется опытным путем. Например, для округлых частиц j ф = 0,77, угловатых –
j ф = 0,66, продолговатых – j ф = 0,50 и пластинчатых – j ф = 0,46. Коэффициент формы связан с фактором формы соотношением j ф = f –2 .

Характерным общим свойством суспензий, порошков, эмульсий и аэрозолей, особенно если они разбавлены, являетсц склонность к оседанию или всплыванию частиц дисперсной фазы. Оседание частиц дисперсной фазы называется седиментацаей, а всплывание частиц - обратной седиментацией.

На каждую частицу в системе действует сила тяжести (гравитационная сила) и подъемная сила Архимеда:

Эти силы постоянны и направлены в разные стороны, равнодействующая сила, вызывающая седиментацию, равна:

Так как седиментация протекает в определенной среде, то при ламинарном движении частицы возникает сопротивление - сила трения, пропорциональная скорости движения частнцы:

Таким образом, сила, действующая на частицу, во время движения, равна:

C ростом скорости при достаточно большом коэффициенте трения наступает момент, когда сила трения достигает силы, вызывающей седиментацию, и таким образом движущая сила F оказывается равной нулю.

Выражение для силы трения, возникающей при движении сферических частиц, можно представить в виде закона Стокса: .

Подставляя ее в полученное уравнение и выражая объем частицы через ее радиус, получим:

1) Закон Стокса справедлив, если частицы дисперсной фазы осаждаются независимо друг от дpyra, что может быть только в разбавленных системах.

2) Обычно частицы в дисперсных системах и твердой дисперсной фазой имеют неправильную форму. При свободном оседании частица несферической формы ориентируется в направлении движения таким образом, чтобы создавалось максимальное сопротивление движению, что уменьшает скорость осаждения.

3) Закон Стокса может не соблюдаться и при турбулентном режиме осаждения частиц.

4) Закон Стокса предполагает наличие внутреннего трения, или вязкого трения, когда граница (поверхность) движения частицы относительно среды находится внутри дисперсионной среды, вязкость которой определяет коэффициент трения. Если межфазное взаимодействие мало, граница (поверхность) движения частицы относительно среды может совпадать с поверхностью раздела фаз и трение оказывается внешним. Это приводит к возникновению скольжения, ускоряющему движение частицы.

5) Применимость закона Стокса ограничивается также дисперсностью частиц. Большие частицы (>100 мкм) могут двигаться ускоренно, очень малые частицы - ультрамикрпгетерогенные (<0,1 мкм) осаждаются настолько медленно, что следить за такой седиментацией практически невозможно.

Принцип седиментационного метода анализа дисперсности состоит в измерении скорости осаждения частиц, обычно в жидкой среде. По скорости осаждения с помощью соответствующих уравнений рассчитывают размеры частиц. Метод позволяет определить распределение частиц по размерам и соответственно подсчитать их удельную поверхность.

При седиментационном анализе дисперсности полидисперсных систем определяют время осаждения частиц отдельных фракций, рассчитывают скорости их осаждения и соответствующие им размеры частиц. Для этого сначала измеряют зависимость массы осевшего осадка от времени, строят график этой зависимости, называемой кривой седиментации, по которому затем определяют все необходимые характеристики дисперсной системы.

Имеются графические и аналитические методы расчета кривой седиментации.

Реальная кривая седиментации полидисперсной системы обычно получается плавной и ей отвечает множество бесконечно малых участков, касательные в каждой точке этой кривой отражают седиментацию данной бесконечно малой фракции.

Результаты седиментациоиного анализа дисперсности полиднсперсных систем представляют также в виде кривых распределения частиц по размерам, характеризующих степень полиднсперсности системы.

Кривая распределения является наглядной и удобной характеристикой полидисперсности системы, по которой легко определить содержание различных фракций. Ее строят подобно кривой распределения пор по размерам. Обычно сначала получают интегральную кривую распределения, проводят ее выравнивание с учетом точности получаемых средних значений радиусов частиц фракций и затем по ней строят дифференциальную кривую распределения. Иногда дифференциальную кривую строят сразу. На оси абсцисс откладывают значения радиусов; на ось ординат наносят отношение приращения массовых долей к разности радиусов частиц соседних фракций Δx/Δr i . Построив на графике отдельные прямоугольники для каждой фракции (гистограмму) и соединив плавной кривой середины их верхних сторон, получают дифференциальную кривую распределения частиц полидисперсной системы по размерам.

Используя уравнение Эйнштейна, рассчитайте вязкость золя AgC l , имеющего концентрацию 10% массовых и содержащего сферические частицы. Плотность AgC l : 5,56·10 3 кг\м 3 ; вязкость и плотность дисперсионной среды составляют 1·10 -3 Па·с и 1000 кг/м 3 соответственно.

Экзаменационный билет № 6

Влияние дисперсности на термодинамическую реакционную способность. Вывод уравнения капиллярной конденсации Кельвина. Влияние дисперсности на растворимость, константу равновесия химической реакции и температуру фазового перехода.

Термодинамическая реакционная способность характеризует способность вещества переходить в какое-либо иное состояние, например переходить в другую фазу, вступать в химическую реакцию. Она указывает на удаленность данного состояния вешества или системы компонентов от равновесного состояния при определенных условиях. Термодинамическая реакционная способность определяется химическим сродством, которое можно выразить изменением энергии Гиббса или разностью химических потенциалов.

Реакционная способность зависит от степени дисперсности вещества, изменение которой может приводить к сдвигу фазового или химического равновесия.

Соответствующее приращение энергии Гиббса dG д (благодаря изменению дисперсности) можно представить в виде объединенного уравнения первого и второго начал термодинамики:

Для индивидуального вещества V=V м и при Т=const имеем:

Подставляя в это уравнение соотношение Лапласа, получим:

для сферической кривизны:

Если рассматривается переход вещества из конденсированной фазы в газообразную, то энергию Гиббса можно выразить через давление пара, приняв его за идеальный. Дополнительное изменение энергии Гиббса, связанное с изменением дисперсности, составляет:

Подставляя данное выражение, получим:

Полученное соотношение называется уравнением Кельвина (уравнение капиллярной конденсации).

Для неэлектролитов его можно записать следующим образом:

Из этого уравнения видно, что с увеличением дисперсности растворимость растет, или химический потенциал частиц дисперсной системы больше, чем у крупной частицы, на величину 2σV/r.

Степень дисперсности может влиять также на равновесие химической реакции:

С увеличением дисперсности повышается активность компонентов, а в соответствии с этим изменяется константа химического равновесия в ту или другую сторону, в зависимости от степени дисперсности исходных веществ и продуктов реакции.

С изменением дисперсности веществ изменяется температура фазового перехода.

Количественная взаимосвязь между температурой фазового перехода и дисперсностью вытекает из термодинамических соотношений.

Для фазового перехода:,

Для сферических частиц:

Видно, что с уменьшением размера частиц г температуры плавления и испарения вещества уменьшаются (H ф.п. >0).

Природа броуновского движения. Понятие и определение среднеквадратичного сдвига по выбранному направлению. Взаимосвязь между среднеквадратичным сдвигом и коэффициентом диффузии (ввод уравнения Эйнштейна-Смолуховского).

Основой доказательства теплового молекулярного движения в телах явилось обнаруженное английским ботаником Робертом Броуном в 1827 г. с помощью микроскопа непрерывное движете очень мелких частичек - спор папоротника (цветочной пыльцы), взвешенных в воде. Более крупные частицы находились в состоянии постоянного колебания около положения равновесия. Колебания и перемещения частиц ускорялись с уменьшением их размера и повышением температуры и не были связаны с какими-либо внешними механическими воздействиями.

Теоретически обоснованная интерпретация броуновского движения - участие частиц дисперсной фазы ультрамикрогетерогенных систем в тепловом движении - была дана независимо друг от друга Эйнштейнии (1905 г.) и Смолуховским (1906 г.).

Проведенными исследованиями была окончательно доказана природа броуновского движения. Молекулы среды (жидкости или газа) сталкиваются с частицей дисперсной фазы, в результате чего она получает огромное число ударов со всех сторон.

Эйнштейн и Смолуховский для количественного выражения броуновского движения частиц ввели представление о среднем сдвиге частицы. Если при наблюдении движения частицы золя под микроскопом через определенные равные промежутки времени отмечать ее местонахождение, то можно получить ее траекторию движения. Так как движение происходит в трехмерном пространстве, то квадрат среднего расстояния, проходимого частицей за любой промежуток времени, равен.

Под микроскопам наблюдают проекцию смещения частицы на плоскость за какое-то время, поэтому .

При равновероятных отклонениях частицы ее направление будет находиться между направлениями x и у, т. е. под углом 45° к каждой координате. Отсюда или .

Из-за равновероятных отклонений среднеарифметическое значение сдвигов равно нулю. Поэтому используются среднеквадратичные расстояния, проходимые частицей:

Эйнштейн и Смолуховский, постулируя единство природы броуновского движения и теплового движения, установили количественную связь между средним сдвигом частицы (называемым иногда амплитудой смещения) и коэффициентом диффузии D.

Если броуновское движение является следствием теплового движения молекул среды, то можно говорить о тепловом движении частиц дисперсной фазы. Это означает, что дисперсная фаза, представляющая собой совокупность числа частиц, должна подчиняться тем же статистическим законам молекулярно-кинетической теории, приложимым к газам или растворам.

Для установления связи между средним сдвигом (смещением) частицы и коэффициентом диффузии представим себе трубку с поперечным сечениемS, наполненную золем, концентрация частиц которого уменьшается слева направо. В этом же направлении протекает и диффузия частиц золя (на рисуике отмечено стрелкой). Выделим по обе стороны от линии MN два малых участка 1 и 2, размеры которых в направлении диффузии равны Δ - среднему квадратичному сдвигу за время τ. Обозначим частичную концентрацию золя в объемах этих участков соответственно через ν 1 и ν 2 (ν 1 >ν 2). Хаотичность теплового движения приводит к равной вероятности переноса дисперсной фазы из обоих объемов вправо и влево от линии MN: половина частиц переместится вправо, а другая половина - влево. Количество дисперсной фазы за время τ переместится из объема 1 вправо: ,а из объема 2 влево (в обратном направлении):.

Так как |Q 1 | > |Q 2 | (ν 1 >ν 2), то суммарное количество перенесенного вещества через плоскость MN вправо определится соотношением .

Градиент концентрации по расстоянию в направлении диффузии можно выразить так:

Подставляя, получим:

Сравнивая это соотношение с первым законом диффузии Фика: ,окончательно имеем:

Это уравнение выражает закон Эйнштейна - Смолуховского, в соответствии с которым квадрат среднего сдвига пропорционален коэффициенту диффузии н времени.

Для отрицательно заряженного гидрозоля A l 2 S 3 , порог коагуляции при добавленном КС l равен 49 ммоль/л. Используя закон Дерягина, рассчитайте пороги коагуляции для таких электролитов как Na 2 S O 4 , MgC l 2 и A l C l 3 .

Экзаменационный билет № 7

Методы получения дисперсных систем: диспергирование и конденсация. Уравнение Ребиндера для работы диспергирования. Адсорбционное понижение прочности (эффект Ребиндера). Конденсация физическая и химическая. Энергия Гиббса образования зародыша новой фазы при гомогенной конденсации; роль пересыщения.

Диспергирование и конденсация - методы получения свободно-дисперсных систем: порошков, суспензий, золей, в том числе аэрозолей, эмульсий и т. д. Под диспергированием понимают дробление и измельчение вещества, под конденсацией - образование гетерогенной дисперсной системы из гомогенной в результате ассоциации молекул, атомов или ионов в агрегаты.

Работа упругого и пластического деформирования пропорциональна объему тела:

Работа образования новой поверхности при диспергировании пропорциональна приращению поверхности:

Полная работа, затрачиваемая на диспергирование, выражается уравнением Ребиндера:

Разрушение материалов может быть облегчено при использовании эффекта Ребиндера - адсорбционного понижения прочности твердых тел. Этот эффект заключается в уменьшении поверхностной энергии с помощью поверхностно-активных веществ, в результате чего облегчается деформирование и разрушение твердого тела.

Процесс конденсации предполагает образование новой фазы на уже имеющихся поверхностях (стенках сосуда, частицах посторонних веществ - ядрах конденсации) или на поверхности зародышей, возникающих самопроизвольно в результате флуктуации плотности и концентраций вещества в системе. В первом случае конденсация называется гетерогенной, во втором - гомогенной.

Чтобы сконденсированное вещество не возвращалось в первоначальную фазу и конденсация продолжалась, исходная система должна быть пересыщенной. В противном случае конденсация не может происходить, исчезают и зародыши конденсации (путем их испарения, растворения, плавления).

При гомогенной конденсации происходит самопроизвольное образование зародышей; энергия поверхности выступает в качестве потенциального барьера конденсации. Энергию Гиббса образования зародышей выражают (в соответствии с объединенным уравнением первого и второго начал термодинамики) в виде четырех составляющих: энтропийной, механической, поверхностной и химической.

Для жидких и газообразных фаз можно ограничиться двумя первыми составляющими энергии Гиббса образования зародышей.

Если степень пересыщения меньше критической, то возникающие зародыши самопроизвольно испаряются (растворяются). Их размеры меньше критического, поэтому энергия Гиббса понижается с уменьшением размера зародыша. Пересыщенный раствор или пар в этих условиях иногда удобно представить как гетерогенно-дисперсную систему, в которой присутствует множество постоянно образующихся и исчезающих зародышей новой фазы. В критической точке неустойчивость равновесия проявляется в том, что существует равная вероятность возникновения и исчезновения зародышей конденсации.

Если степень пересыщения больше критической величины, то возникающие зародыши будут самопроизвольно расти.

Критическая энергия Гиббса образования зародышей конденсации соответствует критической точке - максимуму функции ΔG = f(r):

Таким образом, энергия Гиббса образования зародышей при гомогенной конденсации равна одной трети поверхностной энергии зародыша. Если найти радиус зародыша в критической точке, приравняв к нулю первую производную от энергии Гиббса и подставить его в данное выражение, то получим:

Из этого соотношения следует, что энергия образования зародыша конденсации зависит от степени пересыщения, от нее же зависит и размер критического радиуса зародыша. Чем выше степень пересыщения, тем ниже энергия Гиббса образования зародышей и тем меньше размеры образующихся зародышей, способных к дальнейшему росту.

"

Процесс осаждения частиц происходит по законам падения тел в среде, оказывающей сопротивление их движению. При осаждении частицы вначале движутся ускоренно, а потом сила сопротивления трения среды и сила тяжести уравновешиваются, и частицы приобретают постоянную скорость и осаждаются равномерно.

Постоянную скорость осаждения можно определить по формуле (закон Стокса):

w 0 = (d 2 · (γ-γ 1)) / (18 · μ), м/с

где w 0 - постоянная скорость осаждения, d - диаметр осаждаемой частицы, γ - плотность осаждаемой частицы, γ 1 - плотность среды, μ - динамическая вязкость среды.

Однако использование закона Стокса возможно лишь в определенных пределах. Верхний предел определяется моментом перехода от суспензии к коллоидным растворам, когда частицы дисперсной фазы имеют размер 0,1-0,5 μ, а также учитывается влияние броуновского движения, не препятствующее осаждению частиц.

Верхний предел использования закона Стокса зависит от таких факторов, как размер частиц, их плотности и физические свойства жидкости, в которой эти частицы осаждаются. Данный предел характеризуется числовым показателем критерия Рейнольдса Re≈2. В том случае, если сопротивление среды пропорционально квадрату скорости и Re>2, то для вычисления скорости осаждения частиц используется формула:

w 0 =√((4 · g · d · (γ-γ 1)) / (3 · γ 1 · ζ))

При 500>Re>2 значение коэффициента сопротивления ξ=18,5/(Re) 0,6 , а в случае 15000>Re>500 коэффициент сопротивление равен ζ=0,44.

Практически всегда скорость осаждения в жидкой среде определяется по числовому значению критерия Рейнольдса с предварительным нахождением значения критерия Архимеда. Даже в грубых суспензиях, как правило, находится достаточное количество частиц, для которых Re<2. Таким образом, они имеют небольшую скорость осаждения, которую можно определить по закону Стокса.

Результаты осаждения частиц, которые вычисляются по этим формулам, очень близки к истинным тогда, когда отдельные взвешенные частицы осаждают вне зависимости друг от друга. То есть, в случае их свободного падения, которые может возникать только в разведенных суспензиях.

Осветление жидкости при свободном осаждении суспензий, которые имеют разный размер частиц, происходит постепенно. Вначале осаждаются более крупные частицы, а мелкие частицы образуют муть, которая отстаивается намного медленней. В том случае, если суспензия имеет высокую концентрацию, возникает процесс поверхностного взаимодействия частиц. Эти частицы соединяются в группы, а мелкие частицы увлекаются более крупными.

Следовательно, при осаждении концентрированной суспензии процесс происходит в солидарном режиме. Это значит, что разные частицы по величине осаждаются вместе.

Осадки, которые образуются в процессе отстаивания, разделяются на два типа. Осадки, дающие грубые суспензии, имеют крупнозернистые взвешенные частицы, ложащиеся на дно плотными слоями. Следовательно, между осветленной жидкостью и осевшим осадком имеется хорошо выраженная граница.

Осадок тонких суспензий выглядит иначе. Повышение концентрации суспензии возникает исключительно в нижней части отстойного аппарата. При этом твердые частицы, находящиеся в сгущенном и осевшем слое, разделены между собой жидкостью. Если нет особой разницы между осадком и осветленной жидкостью, то возникает переход от концентрированных слоев к менее концентрированным.

В полидисперсных суспензиях, состоящие из частиц различной величины, довольно часто возникают осадки обоих типов. Это значит, что на дне возникает плотный слой крупных частиц, а над этим осадком находится слой мути.

В том случае, если происходит свободное осаждение частиц различной раздробленности, возникает несколько слоев. При этом размер частиц постепенно уменьшается. Следовательно, сливая верхние слои, можно отделять крупные частицы от мелких. Это свойство полидисперсных систем легло в основу процесса отмучивания, который используется, чтобы разделить смеси твердых веществ разной величины и удельного веса. Для того чтобы повысить устойчивость тонких суспензий, используется электролиты. Данный способ применяется для отделения от глины частиц пирита, песка, известняка, слюды и полевого шпата. В качестве добавки при этом применяется сода или едкий натр.

Концентрация получаемых осадков зависят от величины частиц и структуры осадков. Плотные кристаллические осадки, оседающие сплошным слоем на дно отстойника, могут иметь концентрацию до 60%. Однако, как правило, их концентрация не превышает 40%. В мутях и тонких суспензиях не происходит выпадения настоящего осадка. В них возникает исключительно сгущение суспензии (увеличение концентрации).

Предельной концентрацией осадка является такое содержание в нем твердых частиц, при котором осадок еще имеет возможность перемещаться по трубопроводу.

Иногда во время осаждения твердой фазы, происходит разделение ее на классы или группы зерен, имеющих одинаковую скорость осаждения. Данное разделение можно проводить в движущейся струе воды. Следовательно, данный процесс называют гидравлической классификацией.