Звук как не последняя составляющая мультимедиа. Основные составляющие мультимедийного представления информации

255. По горизонтали. 3. Составляющая мультимедиа, представляющая движущиеся изображения за счёт последовательной смены кадров. 4. Ссылка от одного электронного информационного объекта к другому (например, от слова к толкованию его значения). 6. Мультимедийный продукт, представляющий собой последовательность выдержанных в одном графическом стиле слайдов, содержащих текст, рисунки, фотографии, анимацию, видео и звуковой ряд. 9. Технология, обеспечивающая одновременную работу со звуком, видеороликами, анимациями, статическими изображениями и текстами в интерактивном (диалоговом) режиме. 11. Процесс преобра- зования информации из непрерывной формы представления в дискретную. 12. Специальная заготовка из нескольких слайдов, в которых предусмотрены места для ввода определённых информационных объектов. По вертикали. 1. Форма организации текстового материала, при которой его единицы представлены не в линейной последовательности, а как система явно заданных с помощью гиперссылок возможных переходов, связей между ними. 2. Составляющая мультимедиа; колебания воздуха. 5. Компьютерная имитация движения с помощью изменения (и перерисовки) формы объектов или показа последовательных изображений с фазами движения. 7. Звуковая карта. 8. Технология, в которой в качестве гиперссылок кроме текстовых объектов выступают графические и звуковые. 10. Позволяет выдержать единый графический стиль презентации (цветовую гамму, фоновый рисунок, параметры форматирования текстовых и других объектов).

Звук является наиболее выразительным элементом мультимедиа. Мир звуков окружает человека постоянно. Мы слышим шум прибоя, шелест листвы, грохот водопадов, пение птиц, крики зверей, голоса людей. Всё это – звуки нашего мира.

История этого элемента информации для человека такая же древняя, как и предыдущие (текст, изображение). Первоначально человек создал устройства, с помощью которых он пытался воспроизвести природные звуки для своих практических целей, в частности для охоты. Потом звуки в его голове стали складываться в некую последовательность, которую захотелось сохранить. Появились первые музыкальные инструменты (один из древнейших – китайский крин). Постепенно шел процесс формирования языка, на котором можно было бы записать и тем самым надолго сохранить рожденные мелодии. Первые попытки разработки такого «музыкального алфавита» были предприняты ещё в Древнем Египте и Месопотамии. А в том виде, в котором мы знаем её сейчас (в виде нотной записи), система фиксации музыки сложилась к XVII веку. Её основы были заложены Гвидо д’Ареццо.

Одновременно шло совершенствование систем записи и хранения звука. Человек научился сохранять и воспроизводить не только музыку, но и любые окружающие звуки. Впервые звук был записан в 1877 году на фонографе, изобретенном Томасом Эдисоном. Запись имела вид углублений на бумажном листе, закрепленном на вращающемся цилиндре. Эдисон первым научил свою машину громко отвечать «алло» в микрофон. Это слово раздавалось, когда игла, соединенная с микрофоном, повторяла сделанную на бумаге запись. Механико-акустический метод звукозаписи просуществовал вплоть до 1920-х годов, пока не были изобретены электрические системы. Практическому применению звукозаписи способствовало также два революционных изобретения:

· изобретение пластмассовой магнитной ленты в 1935 году;

· бурное развитие микроэлектроники в 60-е годы.

Бурное развитие вычислительной техники придало этому процессу новый импульс для развития. Мир звуков постепенно соединялся с цифровым миром.

В звуковых платах существует два основных метода синтеза звука:

таблично-волновой синтез (WaveTable, WT), основанный на воспроизведении сэмплов – заранее записанных в цифровом виде звучаний реальных инструментов. Большинство звуковых плат содержит встроенный набор звучаний инструментов, записанных в ПЗУ, некоторые платы допускают использование записей, дополнительно загружаемых в ОЗУ. Для получения звука нужной высоты применяют изменение скорости воспроизведения записи, сложные синтезаторы применяют для воспроизведения каждой ноты параллельное проигрывание разных сэмплов и дополнительную обработку звука (модуляцию, фильтрацию).



Достоинства : реалистичность звучания классических инструментов, простота получения звука.

Недостатки : жесткий набор заранее подготовленных тембров, многие параметры которых нельзя изменить в реальном времени, большие объёмы памяти для сэмплов (иногда до сотен Кб на инструмент), неодинаковое звучание разных моделей синтезаторов из-за различающихся наборов стандартных инструментов.

частотная модуляция (Frequency Modulation, FM) – синтез, основанный на использовании нескольких генераторов сигнала с взаимной модуляцией. Каждый генератор управляется схемой, регулирующей частоту и амплитуду сигнала и представляющей собой базовую единицу синтеза – оператор. В звуковых платах применяется двухоператорный (OPL2) и четырехоператорный (OPL3) синтез. Схема соединения операторов (алгоритм) и параметры каждого оператора (частота, амплитуда и закон их изменения во времени) определяют тембр звучания. Число операторов и схема управления ими задают максимальное количество синтезируемых тембров.

Достоинства : не надо заранее записывать звуки инструментов и хранить их в ПЗУ, велико разнообразие получаемых звучаний, легко повторить тембр на различных платах с совместимыми синтезаторами.

Недостатки : трудно обеспечить достаточно благозвучный тембр во всем диапазоне звучания, имитация звучания реальных инструментов крайне грубая, сложно организовать тонкое управление операторами, из-за чего в звуковых платах используется упрощенная схема с небольшим диапазоном возможных звучаний.

Если в композиции нужен звук реальных инструментов, лучше подходит метод волнового синтеза, для создания же новых тембров более удобен метод частотной модуляции, хотя возможности FM-синтезаторов звуковых плат достаточно ограничены.

Мультимедиа представляет собой совокупность аппаратных и программных средств, обеспечивающих создание звуковых и визуальных эффектов, а также влияние человека на ход выполнения программы, предусматривающей их создание.

Первоначально компьютеры умели "работать" только с числами. Немного позднее они "научились" работать с текстами и графикой. И лишь в последнем десятилетии XX века компьютер "освоил" звук и движущееся изображение. Новые возможности компьютера получили название мультимедиа (multimedia - множественная среда, то есть среда, состоящая из нескольких компонентов различной природы).

Ярким примером применения мультимедийных возможностей являются различные энциклопедии, в которых вывод текста той или иной статьи сопровождается показом связанных с текстом изображений, фрагментов кинофильмов, синхронным озвучиванием выводимого текста и т.д. Мультимедиа широко применяется в обучающих, познавательных, игровых программах. Эксперименты, проводившиеся над большими группами обучаемых, показали, что в памяти остается 25% услышанного материала. Если материал воспринимается зрительно, то запоминается 1/3 увиденного. В случае комбинированного воздействия на зрение и слух доля усвоенного материала повышается до 50%. А если обучение организовано при диалоговом, интерактивном (interaction - взаимодействие) общении обучаемого и мультимедийных обучающих программ, усваивается до 75% материала. Эти наблюдения свидетельствуют об огромных перспективах применения мультимедийных технологий в области обучения и во многих других аналогичных областях применения.

Одной из разновидностей мультимедиа считается так называемое кибернетическое пространство .

Развитием гипертекстовых и мультимедийных систем являются

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования Российской федерации

Университет систем управления и радиоэлектроники

Мультимедиа

и ее составляющие

Реферат по программированию

Составил

Проверил

    • 1. Что такое мультимедиа? 3
    • 2. Что такое CD-ROM? 3
      • 2.1. Немного истории. 4
      • 2.2. Параметры накопителей CD-ROM. 4
      • 2.3. Скорость передачи данных. 4
      • 2.4. Время доступа. 5
      • 2.5. Кэш-память. 6
    • 3. Видеоплаты. 6
      • 3.1. Монохромный адаптер MDA. 6
      • 3.2. Цветной графический адаптер CGA. 7
      • 3.3. Усовершенствованный графический редактор EGA. 7
      • 3.4. Адаптеры стандарта VGA. 7
      • 3.5. Стандарты XGA и XGA-2. 8
      • 3.6. Адаптеры SVGA. 8
    • 4. Звук. 8
      • 4.1. 8- и 16-разрядные звуковые платы. 8
      • 4.2. Колонки. 8
  • 5. Перспективы. 10
  • Таблицы. 11
  • Литература. 13

1. Что такое мультимедиа?

Понятие мультимедиа охватывает целый ряд компьютерных технологий, связанных с аудио, видео и способами их хранения. В самых общих чертах - это возможность объединить изображение, звук и данные. В основном, мультимедиа подразумевает добавление к компьютеру звуковой платы и накопителя CD-ROM.

Для принятия стандартов, касающихся мультимедиа-компьтеров, компанией Microsoft был создан Маркетинговый совет по компьютерам для мультимедиа (Multimedia PC Marketing Council). Этой организацией было создано несколько MPC-стандартов, эмблемы и торговые знаки, которые разрешалось использовать производителям, продукция которых соответствует требованиям данных стандартов. Это позволило создавать совместные аппаратные и программные продукты в области мультимедиа для IBM-совместимых систем.

Недавно Маркетинговый совет по компьютерам для мультимедиа (MPC Marketing Council) передал свои полномочия группе Software Publishers Association"s Multimedia PC Working Group. В нее вошло много организаций - членов совета, и теперь она является законодателем всех MPC-спецификаций. Первое, что сделала эта группа, - приняла новые MPC-стандарты.

Советом было разработано два первых мультимедиа-стандарта, называемых MPC Level 1 и MPC Level 2. В июне 1995 года, после создания группы Software Publishers Association (SPA), эти стандарты были дополнены третьим - MPC Level 3. Данный стандарт определяет минимальные требования к мультимедиа-компьютеру (см. Таблицу 1, страница 11).

Далее рассмотрим конкретнее отдельные составляющие (изображение, звук и данные) мультимедиа.

1. Что такое CD - ROM ?

CD-ROM - это оптический носитель информации, предназначенный только для чтения, на котором может храниться до 650 Мбайт данных, что соответствует примерно 333 000 страницам текста или 74 минутам высококачественного звучания, или их комбинации. CD-ROM очень похож на обычные звуковые компакт-диски, и его можно даже попытаться воспроизвести на обычном звуковом проигрывателе. Правда, при этом вы услышите только шум. Доступ к данным, хранящимся на CD-ROM, осуществляется быстрее, чем к данным, записанным на дискетах, но все же значительно медленнее, чем на современных жестких дисках. Термин CD - ROM относится как к самим компакт-дискам, так и к устройствам (накопителям), в которых информация считывается с компакт-диска.

Сфера применения CD-ROM расширяется очень быстро: если в 1988 году их было записано всего несколько десятков, то на сегодняшний день выпущено уже несколько тысяч наименований самых разнообразных тематических дисков - от статистических данных по мировому сельскохозяйственному производству до обучающих игр для дошкольников. Множество мелких и крупных частных фирм и государственных организаций выпускают свои собственные компакт-диски со сведениями, представляющими интерес для специалистов в определенных областях.

2.1. Немного истории.

В 1978 году фирмы Sony и Philips объединили свои усилия в области разработки современных звуковых компакт-дисков. Фирма Philips к тому времени уже разработала лазерный проигрыватель, а у Sony за плечами были многолетние исследования в области цифровой звукозаписи и производства.

Фирма Sony настаивала на том, чтобы диаметр компакт-дисков был равен 12, а Philips предлагала уменьшить его.

В 1982 году обе фирмы обнародовали стандарт, в котором определялись методы обработки сигналов, способы их записи, а также размер диска - 4,72, который используется и по сей день. Точные размеры компакт-диска таковы: внешний диаметр - 120 мм, диаметр центрального отверстия - 15 мм, толщина - 1,2 мм. Говорят, что такие размеры были выбраны потому, что на таком диске полностью помещалась Девятая симфония Бетховена. Сотрудничество этих двух фирм в 80-е годы привело к созданию дополнительных стандартов, касающихся использования технологий для записи компьютерных данных. На основе этих стандартов были созданы современные накопители для работы с компакт-дисками. И если на первом этапе инженеры трудились над тем, как подобрать размер диска под величайшую из симфоний, то сейчас программисты и издатели думают, как в этот маленький кружочек втиснуть побольше информации.

2.2. Параметры накопителей CD-ROM.

Приводимые в документации к накопителям CD-ROM параметры характеризуют в основном их производительность.

Основными характеристиками накопителей CD-ROM являются скорость передачи и время доступа к данным, наличие внутренних буферов и их емкость, а также тип используемого интерфейса.

2.3. Скорость передачи данных.

Скорость передачи данных определяет объем данных, который может считать накопитель с компакт-диска на компьютер за одну секунду. Основной единицей измерения этого параметра является количество переданных килобайтов данных в секунду (Кбайт/с). Очевидно, что эта характеристика отражает максимальную скорость считывания накопителя. Чем выше скорость считывания, тем лучше, однако необходимо помнить, что существуют и другие важные параметры.

В соответствии со стандартным форматом записи за каждую секунду должно считываться 75 блоков данных по 2 048 полезных байтов. Скорость передачи данных при этом должна быть равна 150 Кбайт/с. Это стандартная скорость передачи данных для устройств CD-DA, которые также называются односкоростными . Термин “односкоростной” означает, что запись на компакт-диски осуществляется в формате с постоянной линейной скоростью (CLV); при этом скорость вращения диска изменяется так, чтобы линейная скорость оставалась постоянной. Поскольку, в отличие от музыкальных компакт-дисков, данные с диска CD-ROM можно считывать с произвольной скоростью (главное, чтобы скорость была постоянной), ее вполне можно повысить. На сегодняшний день выпускаются накопители, в которых информация может считываться с разными скоростями, кратными скорости, которая принята для односкоростных накопителей (см. таблицу 2, страница 11).

2.4. Время доступа.

Время доступа к данным для накопителей CD-ROM определяется так же, как и для жестких дисков. Оно равняется задержке между получением команды и моментом считывания первого бита данных. Время доступа измеряется в миллисекундах и его стандартное паспортное значение для накопителей 24х приблизительно равно 95 мс. При этом имеется в виду среднее время доступа, поскольку реальное время доступа зависит от расположения данных на диске. Очевидно, что при работе на внутренних дорожках диска время доступа будет меньше, чем при считывании информации с внешних дорожек. Поэтому в паспортах на накопители приводится среднее время доступа, определяемое как среднее значение при выполнении нескольких случайных считываний данных с диска.

Чем меньше время доступа, тем лучше, особенно в тех случаях, когда данные нужно находить и считывать быстро. Время доступа к данным на CD-ROM постоянно сокращается. Заметим, что этот параметр для накопителей CD-ROM намного хуже, чем для жестких дисков (100 - 200 мс для CD-ROM и 8 мс для жестких дисков). Столь существенная разница объясняется принципиальными различиями в конструкциях: в жестких дисках используется несколько головок и диапазон их механического передвижения меньше. Накопители CD-ROM используют один лазерный луч, и он перемещается вдоль всего диска. К тому же данные на компакт-диске записаны вдоль спирали и после перемещения считывающей головки для чтения данной дорожки необходимо еще ждать, когда лазерный луч попадет на участок с необходимыми данными.

Приведенные в таблице 3 (страница 12) данные характерны для устройств высокого класса. В каждой категории накопителей (с одинаковой скоростью передачи данных) могут быть устройства с более высоким или более низким значением времени доступа.

2.5. Кэш-память.

Во многих накопителях CD-ROM имеются встроенные буферы, или кэш-память. Эти буферы представляют собой устанавливаемые на плате накопителя микросхемы памяти для записи считанных данных, что позволяет передавать в компьютер за одно обращение большие массивы данных. Обычно емкость буфера составляет 256 Кбайт, хотя выпускаются модели как с большими, так и с меньшими объемами (чем больше - тем лучше!). Как правило, в более быстродействующих устройствах емкость буферов больше. Это делается для более высоких скоростей передачи данных. Рекомендуемая емкость встроенного буфера - не менее 512 Кбайт, что является стандартным значением для большинства двадцатичетырехскоростных устройств.

2. Видеоплаты.

Видоплата формирует сигналы управления монитором. С появлением в 1987 году компьютеров семейства PS/2 фирма IBM ввела новые стандарты на видеосистемы, которые практически сразу же вытеснили старые. Большинство видеоадаптеров поддерживают, по крайней мере, один из следующих стандартов:

MDA(Monochrome Display Adapter);

CGA (Color Graphics Adapter);

EGA (Enhanced Graphics Adapter);

VGA (Video Graphics Array);

SVGA (Super VGA);

XGA (eXtended Graphics Array).

Все программы, предназначенные для IBM-совместимых компьютеров, рассчитаны на эти стандарты. Например, в пределах стандарта Super VGA (SVGA) разные производители предлагают разные форматы изображения, но формат 1024768 является стандартным для приложений, работающих с насыщенными изображениями.

3.1. Монохромный адаптер MDA.

Первым и простейшим видеоадаптером был монохромный адаптер, соответствующий спецификации MDA. На его плате, кроме собственно устройства управления дисплеем, размещалось еще и устройство управления принтером. Видеоадаптер MDA обеспечивал только отображение текста (символов) при разрешении по горизонтали 720 пикселей, по вертикали - 350 пикселей (720350). Это была система, ориентированная на вывод символов; она не могла выводить произвольные графические картинки.

3.2. Цветной графический адаптер CGA.

Многие годы цветной графический адаптер CGA был самым распространенным видеоадаптером, хотя сейчас его возможности очень далеки от совершенства. Этот адаптер имел две основные группы режимов работы - алфавитно-цифровые, или символьные (alphanumeric - A / N ), и графические с адресацией всех точек (all point addressable - ADA ). Символьных режимов два: 25 строк по 40 символов в каждой и 25 строк по 80 символов (оба оперируют шестнадцатью цветами). И в графических, и в символьных режимах для формирования символов используются матрицы размером 88 пикселей. Графических режимов также два: цветной со средним разрешением (320200 пикселей, 4 цвета в одной палитре из 16 возможных) и черно-белый с высоким разрешением (640200 пикселей).

Один из недостатков видеоадаптеров CGA - появление на экранах некоторых моделей мерцания и “снега”. Мерцание проявляется в том, что при перемещении текста по экрану (например, при добавлении строки) символы начинают “подмигивать”. Снег - это случайные вспыхивающие точки на экране.

3.3. Усовершенствованный графический редактор EGA.

Усовершенствованный графический редактор EGA, производство которого было прекращено с началом выпуска компьютеров PS/2, состоял из графической платы, платы расширения памяти изображения, набора модулей памяти изображения и цветного монитора с повышенным разрешением. Одно из преимуществ EGA состояло в возможности строить систему по модульному принципу. Поскольку графическая плата работала с любым из мониторов фирмы IBM, ее можно было использовать и с монохромными мониторами, и с цветными мониторами, имеющими обычное разрешение, ранних моделей, и с цветными мониторами, имеющими более высокое разрешение.

3.4. Адаптеры стандарта VGA.

В апреле 1987 года одновременно с выпуском компьютеров семейства PS/2 фирма IBM ввела в действие спецификацию VGA (видеографическая матрица), которая вскоре стала общепризнанным стандартом систем отображения ПК. Фактически в тот же день IBM обнародовала еще одну спецификацию для систем отображения с низким расширением MCGA и выпустила на рынок видеоадаптер высокого расширения IBM 8514. Адаптеры MCGA и 8514 не стали общепризнанными стандартами, как VGA, и вскоре “сошли со сцены”.

3.5. Стандарты XGA и XGA-2.

В конце октября 1990 года фирма IBM объявила о выпуске видеоадаптера XGA Display Adapter / A для системы PS/2, а в сентябре 1992 года - о выпуске XGA-2. Оба устройства - высококачественные 32-разрядные адаптеры с возможностью передачи им управления шиной (bus master ) предназначены для компьютеров с шиной MCA. Разработанные как новая разновидность VGA, они обеспечивают повышенное разрешение, большее количество цветов и значительно более высокую производительность.

3.6. Адаптеры SVGA.

С появлением видеоадаптеров XGA и 8514/А конкуренты IBM решили не копировать эти разрешения VGA, а начать выпуск более дешевых адаптеров с разрешением, которое выше разрешения продуктов IBM. Эти видеоадаптеры образовали категорию Super VGA , или SVGA .

Возможности SVGA шире возможностей плат VGA. Поначалу SVGA не являлся стандартом. Под этим термином подразумевались многие отличающиеся одна от другой разработки различных фирм, требования к параметрам которых были жестче, чем требования к VGA.

4. Звук.

4.1. 8- и 16-разрядные звуковые платы.

Первым стандартом MPC предусматривался “8-разрядный” звук. Это не означает, что звуковые платы должны были вставляться в 8-разрядный слот расширения. Разрядность звука характеризует количество битов, используемых для цифрового представления каждой выборки. При восьми разрядах количество дискретных уровней звукового сигнала составляет 256, а если использовать 16 бит, то их количество достигает 65 536 (при этом, естественно, качество звука значительно улучшается). 8-разрядное представление является достаточным для записи и воспроизведения речи , а вот для музыки требуется 16 разрядов.

4.2. Колонки.

Для успешных коммерческих презентаций, работы с мультимедиа и MIDI нужны высококачественные стереофонические колонки. Стандартные колонки слишком велики для рабочего стола.

Часто звуковые платы не обеспечивают достаточной для колонок мощности. Даже 4 Вт (как у большинства звуковых плат) бывает мало для того, чтобы ”раскачать” колонки высокого класса. Кроме того, обычные колонки создают магнитные поля и, будучи установленными рядом с монитором, могут искажать изображение на экране. Эти же поля могут испортить записанную на дискете информацию.

Чтобы разрешить эти проблемы, колонки для компьютерных систем должны быть небольшими и с высоким КПД. В них должна быть предусмотрена магнитная защита, например, в виде ферромагнитных экранов в корпусе или электрической компенсации магнитных полей.

На сегодняшний день выпускаются десятки моделей динамиков: от дешевых миниатюрных устройств фирм Sony, Koss и LabTech до больших агрегатов с автономным питанием, например фирм Bose и Altec Lansing. Для оценки качества динамика нужно иметь представление о его параметрах.

Частотная характеристика (frequency response ). Этот параметр представляет полосу частот, воспроизводимых динамиком. Наиболее логичным был бы диапазон от 20 Гц до 20 кГц - он соответствует частотам, которые воспринимает человеческое ухо, но ни один динамик не может идеально воспроизводить звуки всего этого диапазона. Очень немногие люди слышат звуки выше 18 кГц. Самый высококачественный динамик воспроизводит звуки в диапазоне частот от 30 Гц до 23 кГц, а у дешевых моделей звук ограничивается диапазоном от 100 Гц до 20 кГц. Частотная характеристика является самым субъективным параметром, так как одинаковые, с этой точки зрения, динамики могут звучать совершенно по-разному.

Нелинейные искажения (TDH - Total Harmonic Distortion). Этот параметр определяет уровень искажений и шумов, возникающих в процессе усиления сигнала. Попросту говоря, искажения представляют собой разность между подаваемым на динамик звуковым сигналом и слышимым звуком. Величина искажений измеряется в процентах, и допустимым считается уровень искажений, равный 0,1%. Для высококачественной аппаратуры стандартом считается уровень искажений 0,05%. У некоторых динамиков искажения достигают 10%, а у наушников - 2%.

Мощность. Этот параметр обычно выражается в ваттах на канал и обозначает выходную электрическую мощность, подводимую к колонкам. Во многих звуковых платах есть встроенные усилители с мощностью до 8 Вт на канал (обычно 4 Вт). Иногда этой мощности не достаточно для воспроизведения всех оттенков звука, поэтому во многих колонках устанавливаются встроенные усилители. Такие колонки можно переключать в режим усиления сигнала, поступающего со звуковой платы.

3. Перспективы.

Итак, в мире явно наблюдается бум мультимедиа. При таких темпах развития, когда возникают новые направления, а другие, казавшиеся весьма перспективными, вдруг становятся неконкурентноспособными, трудно составлять даже обзоры: их выводы могут стать неточными или вообще устареть через совсем небольшое время. Прогнозы же дальнейшего развития систем мультимедиа тем более ненадежное занятие. Мультимедиа значительно увеличивает количество и повышает качество информации, способной храниться в цифровой форме и передаваться в системе “человек - машина”.

Таблицы.

Таблица 1. Стандарты мультимедиа.

Процессор

75 МГц Pentium

Жесткий диск

Накопитель на гибких дисках

3,5-дюймовый на 1,44 Мбайт

3,5-дюймовый на 1,44 Мбайт

3,5-дюймовый на 1,44 Мбайт

Накопитель

Однократная скорость

Двойная скорость

Учетверенная скорость

Разрешение адаптера VGA

640480,

640480,

65536 цветов

640480,

65536 цветов

Порты

Ввода-вывода

Последовательный, параллельный, игровой, MIDI

Последовательный, параллельный, игровой, MIDI

Программное обеспечение

Microsoft Windows 3.1

Microsoft Windows 3.1

Microsoft Windows 3.1

Дата принятия

Таблица 2. Скорости передачи данных в накопителях CD-ROM

Тип накопителя

Скорость передачи данных, байт/с

Скорость передачи данных, Кбайт/с

Односкоростной (1х)

Двухскоростной (2х)

Трехскоростной (3х)

Четырехскоростной (4х)

Шестискоростной (6х)

Восьмискоростной (8х)

Десятискоростной (10х)

Двенадцатискоростной (12х)

Шестнадцатискоростной (16х)

Восемнадцатискоростной (18х)

Тридцатидвухскоростной (32х)

Стоскоростной (100х)

1 843 200 - 3 686 400

Таблица 3. Стандартное время доступа к данным в накопителях CD-ROM

Тип накопителя

Время доступа к данным, мс

Односкоростной (1х)

Двухскоростной (2х)

Трехскоростной (3х)

Четырехскоростной (4х)

Шестискоростной (6х)

Восьмискоростной (8х)

Десятискоростной (10х)

Двенадцатискоростной (12х)

Шестнадцатискоростной (16х)

Восемнадцатискоростной (18х)

Двадцатичетырехскоростной (24х)

Тридцатидвухскоростной (32х)

Стоскоростной (100х)

Литература.

Скотт Мюллер, Крег Зекер. Модернизация и ремонт ПК. - М.:Издательский дом “Вильямс”, 1999. - 990 стр.

С. Новосельцев. Мультимедиа - синтез трех стихий//Компьютер Пресс. - 1991, №8. - стр. 9-21.

Подобные документы

    Области применения мультимедиа. Основные носители и категории мультимедиа-продуктов. Звуковые карты, CD-ROM, видеокарты. Программные средства мультимедиа. Порядок разработки, функционирования и применения средств обработки информации разных типов.

    контрольная работа , добавлен 14.01.2015

    Специальная электронная плата, которая позволяет записывать звук, воспроизводить его и создавать программными средствами с помощью микрофона. Объем памяти видеоадаптеров. Основные характеристики сканеров. Оптическое разрешение и плотность, глубина цвета.

    реферат , добавлен 24.12.2013

    Основные узлы. Видеокарты стандарта MDA. Монохромный адаптер Hercules И другие видеоадаптеры: CGA, EGA, MCGA, VCA, XGА, SVGA и VESA Local Bus. Аппаратный ускоритель 2D. Тестирование видеоплат. технологические изменения в начинке и конструкции плат.

    реферат , добавлен 14.11.2008

    Различные виды определения термина "мультимедиа". Мультимедиа-технологии как одно из наиболее перспективных и популярных направлений информатики. Мультимедиа в сети Internet. Компьютерная графика и звуки. Различные области применения мультимедиа.

    курсовая работа , добавлен 19.04.2012

    Использование профессиональных графических примеров. Применение продуктов мультимедиа. Линейное и структурное представление информации. Мультимедиа ресурсы сети Интернет. Программное обеспечение мультимедиа-компьютера. Создание и обработка изображения.

    курсовая работа , добавлен 04.03.2013

    Потенциальные возможности компьютера. Широкое применение мультимедиа технологии. Понятие и виды мультимедиа. Интересные мультимедиа устройства. 3D очки, web-камеры, сканер, динамический диапазон, мультимедийная и виртуальная лазерная клавиатура.

    реферат , добавлен 08.04.2011

    Операционная система Microsoft с настраиваемым интерфейсом - Windows ХР. Работа стандартных прикладных программ: блокнот, графический редактор Paint, текстовой процессор WordPad, калькулятор, сжатие данных, агент сжатия, стандартные средства мультимедиа.

    контрольная работа , добавлен 25.01.2011

    Теоретические аспекты среды программирования Delphi. Сущность понятия жизненного цикла, характеристика спиральной модели. Назначение программы "Графический редактор", ее основные функции. Работа с графическим редактором, документирование программы.

    курсовая работа , добавлен 16.12.2011

    Характеристика графических возможностей среды программирования Lazarus. Анализ свойств Canvas, Pen, Brush. Сущность методов рисования эллипса и прямоугольника. Возможности компонентов Image и PaintBox. Реализации программы "Графический редактор".

    курсовая работа , добавлен 30.03.2015

    Характеристика видеокарты. Графический процессор - сердце видеокарты, характеризующее быстродействие адаптера и его функциональные возможности. Разработка инструкционно-технологической карты по ремонту видеоплат. Ремонт видеокарты в домашних условиях.

Компоненты мультимедиа

Что такое мультимедиа? Multi – много, Media – среда. Это человеко-машинный интерфейс, в котором используются различные, естественные для человека каналы коммуникации: текст, графика, анимация (видео), аудиоинформация. А также более специализированные виртуальные каналы, обращающиеся, к различным органам чувств. Рассмотрим подробнее основные составляющие мультимедиа.

1. Текст . Представляет собой знаковую или вербальную информацию. Символами текста могут быть буквы, математические, логические и другие знаки. Текст может быть не только литературным, текстом являются компьютерная программа, нотная запись и пр. В любом случае это последовательность символов, написанная на каком-то языке.

Слова текста не имеют никакого видимого сходства с тем, что они обозначают. То есть они адресованы к абстрактному мышлению, а в голове мы их перекодируем в те или иные предметы и явления.

При этом текст всегда обладает точностью и конкретностью, он надежен как средство коммуникации. Без текста информация перестает быть конкретной, однозначной. Такимобразом, текст является абстрактным по форме, но конкретным по содержанию.

На текстовой информации основаны научная статья, рекламное объявление, газета или журнал, Web-страница глобальной сети Интернет, интерфейс компьютерной программы и многое другое. Убрав текст из любого из указанных информационных продуктов, мы этот продукт фактически уничтожим. Даже в рекламном объявлении, не говоря уже о проспектах, периодике, книгах главное – текст. Главная цель подавляющего числа печатных материалов – это донести до человека определенную информацию в виде текста.

Текст может быть не только визуальным. Речь – это тоже текст, понятия, закодированные в виде звуков. И этот текст намного древнее, чем письменный. Человек научился говорить раньше, чем писать.

2. Визуальная или графическая информация. Эта вся остальная поступающая через зрение, статичная и не закодированная в текст информация. Как средство коммуникации изображение более многозначно и неопределенно, оно не обладает конкретностью текста. Но обладает другими достоинствами.

а) Богатство информации. При активном просмотре адресат одновременно воспринимает множество значений, смыслов, нюансов. Например, на фотографии много могут сказать выражения лиц людей, из позы, окружающий фон и т.д. И каждый может воспринять одно и то же изображение по-разному.

б) Простота восприятия. На просмотр иллюстрации затрачивается намного меньше усилий, чем на чтение текста. Нужный эмоциональный эффект может быть достигнут намного легче.

Графику можно разделить на два вида: фотографию и рисунок. Фотографически точное отображение реального мира придает материалу достоверность и реалистичность и в этом его ценность. Рисунок – это уже преломление реальности в человеческом сознании в виде символов: кривых, фигур, их окраски, композиции и прочего. Функции у рисунка могут быть две:

а) наглядное уточнение и дополнение информации: в виде чертежа, схемы или в виде иллюстрации в книге – цель одинакова;

б) создание определенного стиля, эстетического облика публикации.

3. Анимация или видео , то есть движение.Компьютерная анимация чаще всего используется для решения двух задач.

а) Привлечение внимания. Любой движущийся объект сразу же привлекает внимание зрителя. Это инстинктивное свойство, т.к. движущийся объект может быть опасен. Поэтому анимация важна как фактор привлечения внимания к самому главному.

При этом достаточно бывает простых средств привлечения внимания. Так, для баннеров в Интернете обычно используют элементарные, циклически повторяемые движения. Сложная анимация даже противопоказана, поскольку Веб-сайты часто и так бывают перегружены графикой. А это раздражает и утомляет посетителя.

б) Создание различных информационных материалов: роликов, презентаций и пр. Здесь монотонность не годится. Необходимо управлять вниманием зрителя. А для этого требуются такие вещи, как сценарий, сюжет, драматургия, пусть даже и в упрощенной форме. У развития действия во времени существуют свои стадии и свои законы (о чем будет сказано далее).

4. Звук. Звуковая информация обращена к другому органу чувств – не к зрению, а к слуху. Естественно, что там имеется своя специфика, свой дизайн и технические особенности. Хотя в восприятии информации можно заметить много сходного. Аналогом письма служит речь, изобразительное искусство до некоторой степени можно сопоставить с музыкой, используются также природные, необработанные звуки.

Существенная разница состоит в том, что статического звука не существует. Звук – это всегда динамичные колебания среды, обладающие определенными частотой, амплитудой, тембровыми характеристиками.

Человеческое ухо обладает высокой чувствительностью к гармоническому спектру звуковых колебаний, к диссонансу обертонов. Поэтому получение высококачественного оцифрованного компьютерного звука до сих пор является технически сложной задачей. И многие специалисты считают аналоговый звук более «живым», естественным по сравнению с цифровым звуком.

5. Виртуальные каналы , которые обращаются к другим органам чувств.

Так, виброзвонок в мобильном телефоне обращается не к зрению и слуху, а к осязанию. И это не экзотика, а распространённый канал информации. О том, что кто-то хочет поговорить с абонентом. Тактильные (осязательные) ощущения применяются и для других целей: имеются различные тренажёры, специальные перчатки для компьютерных игр и для хирургов и пр.

В появившихся в последнее время 4D кинотеатрах эффекта присутствия зрителя в фильме добиваются разными, не применяемыми раньше средствами: подвижные кресла, брызги в лицо, порывы ветра, запахи.

Есть даже каналы связи и управления, в которых задействованы непосредственно нервные клетки, мозг человека. Они разрабатываются для инвалидов, людей с ограниченными возможностями. Человек после тренировки способен силой мысли управлять движением точек на экране. А также (что важнее) мысленно отдавать команды, приводящие в движение специальную инвалидную коляску.

Таким образом, виртуальная реальность из фантастики постепенно превращается в часть повседневной жизни.